3 research outputs found

    A Comparison of Parametric and Sample-Based Message Representation in Cooperative Localization

    Get PDF
    Location awareness is a key enabling feature and fundamental challenge in present and future wireless networks. Most existing localization methods rely on existing infrastructure and thus lack the flexibility and robustness necessary for large ad hoc networks. In this paper, we build upon SPAWN (sum-product algorithm over a wireless network), which determines node locations through iterative message passing, but does so at a high computational cost. We compare different message representations for SPAWN in terms of performance and complexity and investigate several types of cooperation based on censoring. Our results, based on experimental data with ultra-wideband (UWB) nodes, indicate that parametric message representation combined with simple censoring can give excellent performance at relatively low complexity

    Frame Size Analysis of Optimum Dynamic Tree in RFID Systems

    Get PDF
    In RFID (Radio Frequency Identification) system, an anti-collision algorithm plays a prominent role in the tag identification process in order to reduce the tag identification delay and enhance the RFID system efficiency. In this work, we present a theoretical analysis of optimal frame size assignment for maximizing the system efficiency of a tree-based anti-collision algorithm, called optimum dynamic tree (ODT) algorithm, for RFID tag identification process. Our analysis indicates that the appropriate frame size for a given number of competing tags should not be set to the same value as the number of tags, which is commonly adopted in the literature. Instead, the frame size should be smaller roughly by a factor of 0.871 to maximize system efficiency. The closed-form for calculating system efficiency is derived and the derived simulation results are in a good agreement with the theoretical one. The exact appropriate frame sizes for the number of tags ranging from 2 to 100 are tabulated and compare the tag-identification time of conventional binary tree and ODT algorithms by using the international standard ISO 18000-6B
    corecore